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A new approach to oligonucleotide N3 0 ! P5 0

phosphoramidate building blocks
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Abstract—A new synthetic approach to 5 0-phosphoramidites of 3 0-aminonucleosides was developed. The methodology relies upon
the use of 3 0-amino-2 0,3 0-dideoxynucleosides as the key starting materials. The final products were obtained in high yields via 2–3-
step processes using selective introduction of orthogonal protective groups to the 3 0-aminonucleoside sugar and base moieties.
� 2006 Elsevier Ltd. All rights reserved.
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Oligonucleotide N30 ! P50 thio-phosphoramidates (NPS)
are currently under pre-clinical and clinical develop-
ment as potential anticancer agents targeted to human
telomerase.1 Moreover, oligonucleotide N3 0 ! P5 0

phosphoramidates (NP) have been successfully used
as potent antisense and antigene agents, as well as
diagnostic chromosomal DNA FISH probes.2 These
oligonucleotide analogues are currently prepared by an
amidite transfer method, which utilizes the key 3 0-amino-
nucleoside–5 0-phosphoramidite building blocks (1a,g,c,t;
Fig. 1). Therefore, a readily accessible, economically
viable synthetic route to these compounds may play an
important role in the successful development of the
oligonucleotide phosphoramidates as therapeutic and
diagnostic agents.
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Figure 1. General structure of 3 0-aminonucleoside 5 0-phosphor-
amidites.
The earlier described synthesis of these monomers
utilizes a highly complex, labor-intensive, low-yielding
multi-step process: 10 steps for preparation of the
purines and 7 steps for the pyrimidine compounds.3

The total yield of the phosphoramidite products (on
gram-to-kg scale) reached only approximately 4–5%
for the purines and 15–20% for the pyrimidines. The
natural 2 0-deoxynucleosides with 3 0-hydroxyl group
were used as the chemistry defining starting materials
for these reported procedures.
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Scheme 1. Synthesis of thymidine phosphoramidite 1t, where (i)
TrCl, Py/EtN(iPr)2, (ii) (iPr2N)P(Cl)OCE, EtN(iPr)2 R = iPr; CE =
2-cyanoethyl.
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Scheme 2. Synthesis of adenosine phosphoramidite 1a, where (i) TrCl, Py/DMF/Et3N, (ii) BzCl, Py, (iii) (iPr2)NP(Cl)OCE, EtN(iPr)2 R = iPr;
CE = 2-cyanoethyl.

4496 D. Zielinska et al. / Tetrahedron Letters 47 (2006) 4495–4499
Here, we present a new synthetic approach to the purine
(with AdeBz and GuaiBu bases) and pyrimidine (Thy and
CytBz bases) phosphoramidites (1a,g,t,c, respectively).
The developed methodology relies upon the application
of 3 0-amino-2 0,3 0-dideoxynucleosides as the key new
starting materials.4 The final phosphoramidite products
were obtained, in high yields, via a two- (for Thy), or
three- (for Ade, Gua, Cyt)-step, fast and efficient chem-
ical transformations using selective introduction of
orthogonal protective groups to the 3 0-aminonucleoside
sugar and base moieties.

The performed chemical reactions are outlined in
Schemes 1–4. In general, a regio-selective 3 0-NH-trityl-
ation is the key enabling step for this new approach to
phosphoramidites 1a,g,t,c through 3 0-amino nucleo-
sides.5 Thus, preparation of the thymidine monomer 1t
involves only two chemical steps: 3 0-NH-selective (3 0-
amino- vs 5 0- hydroxyl group) tritylation in pyridine in
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Scheme 3. Synthesis of guanosine phosphoramidite 1g, where (i) TrCl, Py/
CE = 2-cyanoethyl.
presence of diisopropylethylamine of the nucleoside
3 0-aminogroup (yield 85%). The tritylation reaction was
subsequently followed by a standard 5 0-O-phosphityl-
ation of the 5 0-OH-3 0-NH-Tr–thymidine precursor,
resulting in 1t.6,7 The overall yield of the phosphoramidite
product 1t was 70%, based on the starting 3 0-amino-3 0-
deoxythymidine (Scheme 1).

The adenosine, guanosine and cytidine-based monomers
1a,g,c were prepared in a similar manner (Schemes 2–4).
However, presence of the second reactive amino group
at the heterocyclic bases (N6, N2 and N4, respectively),
as well as the low solubility of these nucleosides in anhy-
drous organic solvents (particularly for 3 0-aminoguano-
sine), required the use of different tritylation conditions.

Hence, adenosine phosphoramidite 1a was prepared as
follows: 3 0-aminoadenosine was 3 0-NH-tritylated in
DMF in the presence of triethylamine. The 3 0-NH-trityl-
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DMF/Et3N, (ii) iBzCl, Py, (iii) (iPr2)NP(Cl)OCE, EtN(iPr)2 R = iPr;
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Scheme 4. Synthesis of cytidine phosphoramidite 1c, where (i) TrCl, Py/Et3N, (ii) Bz2O, MeOH, (iii) (iPr2)NP(Cl)OCE, EtN(iPr)2 R = iPr; CE = 2-
cyanoethyl.
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Figure 2. Proposed structure of the by-product formed during in situ
N6-benzoylation of 3 0-NH-Tr–adenosine.
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ated intermediate was isolated via aqueous wash and
extraction procedure, with >90% yield, and it was taken
to the next N6-benzoylation step without any further
purification (Scheme 2). Formation of small amounts
(est. <5%) of the bis-5 0-O-,3 0-NH-trityl by-product was
detected by ESI MS and TLC analysis. The subsequent
N6-benzoylation (using either a per-benzoylation pro-
cess or TMS–Cl based transient protection procedure)
resulted in 5 0-OH-3 0-NH-Tr-N6-Bz–adenosine precursor
(Scheme 2). This compound was purified by silica gel
column chromatography and then 5 0-O-phosphitylated,
resulting in the desired phosphoramidite 1a in 60% over-
all yield, based on the starting amino nucleoside.6,7

Alternatively, using a one-pot synthetic approach,
3 0-aminoadenosine was 3 0-NH-tritylated in solution of
pyridine in the presence of triethylamine, and the crude
reaction mixture was N6-benzoylated without isolation
of the 3 0-tritylated intermediate using TMS–Cl-based
transient protection method. The overall yield of the
5 0-OH-3 0-NH-Tr-N6-Bz–adenosine intermediate was
70% after column chromatography. This synthetic route
resulted in generation of a by-product (<10% by
weight), which was readily separated from the desirable
compound during silica gel chromatography. The pro-
posed chemical structure of this unexpected by-product
with an open imidazole ring is shown in Figure 2. The
structure is consistent with the observed molecular
weight, 1D and 2D COSY 1H NMR spectra, and its
chemical properties.8 It appears that formation of this
by-product is caused by the presence of triethylamine
during the N6-benzoylation step with benzoyl chloride,
since removal of triethylamine (by aqueous washings
prior to benzoylation) results in its elimination. Interest-
ingly, this type of by-product was not detected during
N6-benzoylation of 2 0-deoxyadenosine (with 3 0-OH
group) under similar experimental conditions. The dif-
ference is likely due to the electron-donating effect of
the 3 0-amino group to the adenine base.9
Synthesis of guanosine phosphoramidite 1g was also
performed in three steps as follows (Scheme 3). First,
3 0-amino-2 0,3 0-dideoxyguanosine was selectively 3 0-
NH-tritylated in a mixture of DMF and pyridine at
50 �C. Formation of relatively small amounts of a single
impurity bis-3 0-NH,-N2-trityl–guanosine (est. <5%) was
detected. The desired product, 5 0-hydroxy-3 0-NH-trityl
guanosine, was isolated by precipitation with water (or
by crystallization from dichloromethane) with an yield
of 93%. Subsequently, this compound was reacted with
iso-butyryl chloride (iBu–Cl) to form the phosphor-
amidite precursor N2-iBu-3 0-NH-Tr–guanosine. Either
N,O-per-acylation with iBu–Cl, or transient protection
with TMS–Cl followed by iBu–Cl acylation was used
for the N2-iso-butyrylation step, resulting in product
yields of 60% and 53%, respectively, (after crystalliza-
tion from hot acetonitrile). Finally, the phosphoramidite
1g was formed using typical phosphitylation procedure,
resulting in the final product 1g with an overall yield of
45%.6,7

Interestingly, if isobutyric anhydride rather than iBu–Cl
was used for N2-amino group protection by per-acyl-
ation procedure, then the formation of primarily 5 0-O-
iBu-3 0-NH-Tr–guanosine with unacylated N2-group
was observed. This compound was isolated with 90%
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yield via crystallization from dichloromethane/aceto-
nitrile. Moreover, it appears that the quality of iBu–Cl
plays an important role in achieving good yield of the
product. The presence of products of hydrolysis of
iBu–Cl in the reaction mixture during the N2-protection
reaction led to formation of significant amounts (up to
50%) of a major by-product: 3 0-NH-iBu-N2-Tr–
guanosine.10

Preparation of phosphoramidite 1c was conducted in a
similar fashion (Scheme 4). First, 3 0-amino group of
3 0-amino-2 0, 3 0-dideoxycytidine was regio-selectively pro-
tected with trityl chloride in pyridine and DMF mixture,
1:4 (v/v), in presence of triethylamine (4 M equiv).
Second, we sought to utilize the high nucleophilicity of
the exocyclic N4-amino group of 3 0-amino cytidine,
relative to the Ade and Gua counterparts. Hence, N4-
amino group was protected with benzoic anhydride in a
mixture of acetonitrile and methanol, 9:1 (v/v), at 50 �C.
This reaction results in the formation of N4-Bz-3 0-NH-
Tr-5 0-OH–cytidine precursor as the predominant prod-
uct, with an isolated yield of�70%, based on the starting
3 0-amino nucleoside. Importantly, no significant 5 0-O-
benzoylation (est. <5%) was observed under the reaction
conditions used. Finally, standard 5 0-O-phosphitylation
produced the desirable phosphoramidite 1c.6,7 This new
3 0-amino nucleoside-based procedure for preparation of
1c reduces the total number of chemical steps (from seven
to three) with significant increase in the process efficiency
and overall yield of final product (16% cf. 60%).11

In conclusion, we report an efficient and simple method
for preparation of 3 0-aminonucleoside-5 0-phosphor-
amidites, the key building blocks used for assembly of
oligonucleotide N3 0 ! P5 0 phosphoramidates and thio-
phosphoramidates, which are currently under clinical
development as potential therapeutic agents.
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